Language selector
Medical suppliers must change how they manage their supply chains, and factories need to be able to rapidly pivot to manufacturing different products, in order to respond quickly to the next major crisis and avoid shortages of vital medical goods, experts say.
Four storeys high and made almost entirely of wood, the ZEB Lab building in Trondheim, Norway, had, even before it existed, sucked as much carbon from the atmosphere as it would probably produce in construction. Now, thanks to its arboreal origins, as well as to the sleek expanse of solar panels on its roof and to other energy efficiency measures, it is a carbon-negative building. In other words, from birth to demise, it will have drawn down more carbon than it emitted.
Stone and concrete structures with the ability to heal themselves in a similar way to living organisms when damaged could help to make buildings safer and last longer.
Concrete has become our building material of choice for countless structures such as bridges, towers and dams. But it also has a huge environmental footprint mostly due to carbon dioxide emissions from the production of cement – one of its main constituents. Researchers are now experimenting with root vegetables and recycled plastic in concrete to see whether this can make it stronger – and more sustainable – and even power streetlights or air pollution sensors.
Retrofitting Europe’s buildings for energy efficiency is not enough to slash the carbon footprint of the construction sector and cut emissions in time to meet the Paris climate agreement goals, according to Dr Catherine De Wolf, assistant professor of design and construction management at TU Delft in the Netherlands.
Imagine controlling your computer just by thinking. It sounds far-out, but real advances are happening on these so-called brain-computer interfaces. More researchers and companies are moving into the area. Yet major challenges remain, from user training to the reality of invasive brain implant procedures.
Thanks to rapid computing developments in the last decade and the miniaturisation of electronic components, people can, for example, track their movements and monitor their health in real time by wearing tiny computers. Researchers are now looking at how best to power these devices by turning to the user’s own body heat and working with garments, polka dots and know-how from the textile industry.
Storing power generated by strong winds or bright sunshine by turning it into liquid fuel such as methanol can help to ensure green energy does not go to waste, without having to rely on batteries.
On the southern outskirts of the city of Owensboro in Kentucky, US, there is a square, nondescript building. Inside, rows and rows of small plants are growing under artificial lights. This is a new generation biotech venture: a molecular farm. Others are springing up across the US and elsewhere – and they farm vaccines. This means that if we find a coronavirus vaccine that works, their produce could be used by households worldwide.
If humans are to travel to distant destinations in space like the moon or Mars, they’ll need ways to live for long periods of time. And one of the key challenges of that includes how to have safe food and water to eat and drink when far from Earth.
Hyperloops could replace short-haul air travel.
Car manufacturers are rolling out higher levels of automation but public acceptance is lagging behind.
Topography can reveal asteroid types – crucial to know for mining or deflecting Earth-bound rocks.
Sign up for our weekly news alert
Dr Kate Rychert studies ocean plate structures.
Dr Chaix says a shift to greener modes of transport is 'extremely complex' to achieve, despite post-lockdown calls for action.