Language selector
Stone and concrete structures with the ability to heal themselves in a similar way to living organisms when damaged could help to make buildings safer and last longer.
Concrete has become our building material of choice for countless structures such as bridges, towers and dams. But it also has a huge environmental footprint mostly due to carbon dioxide emissions from the production of cement – one of its main constituents. Researchers are now experimenting with root vegetables and recycled plastic in concrete to see whether this can make it stronger – and more sustainable – and even power streetlights or air pollution sensors.
Retrofitting Europe’s buildings for energy efficiency is not enough to slash the carbon footprint of the construction sector and cut emissions in time to meet the Paris climate agreement goals, according to Dr Catherine De Wolf, assistant professor of design and construction management at TU Delft in the Netherlands.
Imagine controlling your computer just by thinking. It sounds far-out, but real advances are happening on these so-called brain-computer interfaces. More researchers and companies are moving into the area. Yet major challenges remain, from user training to the reality of invasive brain implant procedures.
Thanks to rapid computing developments in the last decade and the miniaturisation of electronic components, people can, for example, track their movements and monitor their health in real time by wearing tiny computers. Researchers are now looking at how best to power these devices by turning to the user’s own body heat and working with garments, polka dots and know-how from the textile industry.
Storing power generated by strong winds or bright sunshine by turning it into liquid fuel such as methanol can help to ensure green energy does not go to waste, without having to rely on batteries.
On the southern outskirts of the city of Owensboro in Kentucky, US, there is a square, nondescript building. Inside, rows and rows of small plants are growing under artificial lights. This is a new generation biotech venture: a molecular farm. Others are springing up across the US and elsewhere – and they farm vaccines. This means that if we find a coronavirus vaccine that works, their produce could be used by households worldwide.
If humans are to travel to distant destinations in space like the moon or Mars, they’ll need ways to live for long periods of time. And one of the key challenges of that includes how to have safe food and water to eat and drink when far from Earth.
Scientists are reducing the size and costs of medical microscopes to make it possible to use them more widely, and hook them up to experts able to diagnose an illness even from far away.
Robots that use artificial intelligence to recognise the health of fruit and vegetable crops and when they’re ready to harvest are being trialled to help small, organic and greenhouse farmers with weeding and patrolling for pests.
Better predictions of volcano behaviour could protect people and infrastructure.
Bacteria can give structures an ‘in-built immune system’ to help them last longer.
Independent factcheckers can bring context to AI tools, says media anthropologist.
Sign up for our weekly news alert
Dr Kate Rychert studies ocean plate structures.
Dr Chaix says a shift to greener modes of transport is 'extremely complex' to achieve, despite post-lockdown calls for action.