Directorate-General for Research & Innovation logo Horizon: the EU Research & Innovation magazine | European Commission logo
Receive our editor’s picks

What does the future hold for 3D printing?

The Avio Aero project, based in Italy, is using 3D technology for aeroplane engines. Image courtesy of Avio Aero
The Avio Aero project, based in Italy, is using 3D technology for aeroplane engines. Image courtesy of Avio Aero

3D printing is poised to transform the world as we know it. Consumer goods will be personalised and produced on demand, while manufacturers will be able to use 3D printing to come up with radical new designs for everyday objects. But how will this happen, and when?

The ultimate goal of 3D printing is to give us a Star Trek-style replicator, where you can order, for example, a hot drink and the machine will assemble it for you, atom-by-atom, explained Marcel Slot – the coordinator of the EU-funded Diginova project – in a Horizon podcast.

However, don’t throw out your kettle just yet. The project forecasts that we’ll have to wait for a while before we can make a replicator.

In the meantime, though, we’ll be able to embed electronic components into 3D-printed devices, create made-to-measure bones using live cells, and in just two decades we’ll be able to start printing our own homes, Diginova believes.

The project brought together 20 research institutes and companies to compile a roadmap to analyse exactly what the future holds for digital manufacturing.

As well as 3D printing, it also looked at digital 2D printing, printed electronics and smart lighting, and how they could converge in future.

‘If you bring these communities together, you start seeing the enormous advantages of convergence of these fields,’ said Slot.

But how long will it be until we have embedded electronics, made-to-measure replacement bones and 3D-printed houses? We’ve brought together some of the best predictions into an interactive timeline looking at what the future of 3D printing could hold:

  • A 3D printer that can embed 3D electronics. Image courtesy of TNO.

    Devices will be printed with integrated electronic chips, enabling manufacturers to radically rethink the design of objects. 3D printing technology will also be used to generate a tailored prescription that includes a specific dose. In the home, advanced 3D printers that can mix metal and plastic will be as common as microwave ovens, while warships and aircraft hangers will also be equipped with 3D printers.
  • 3D-printed bone scaffolding. Image courtesy of BIO-SCAFFOLDS.

    Scientists will be able to build scaffolds that are designed to fit specific parts of a damaged bone, for example, providing a framework to help the body heal itself. Medical microfactories would allow hospitals to print on-site, custom-made medical devices such as dental aligners, medical guides or surgical instruments, and replacement organs.
  • 3D printers could one day build a house. Image courtesy of Diginova.

    Two crane-like arms could support a crossbeam that holds a printing head over a construction site. The device could then print a building layer-by-layer using jets of concrete. Researchers believe the technology would be able to make a two-storey house in just under a day. On the moon and in space, 3D printers could be used to create components and even print habitats for astronauts.
  • A leaf-shaped sonar cell. Image courtesy of Diginova.

    3D printing could mean devices that have tiny batteries and sensors built into them. When this can be done for a reasonable cost, it will enable engineers to create an internet of things, where everyday objects can sense their environment and communicate with each other.
  • Artist's impression of atoms. Image courtesy of Shutterstock/ U. Shtanzman.

    One day, 3D printers may be able to construct materials atom-by-atom, for example by using carbon atoms to make a lightweight material that is harder than diamond. The technology could be used to make things like high-power fuel cells, single-molecule sensors, molecular-scale computer circuits and selectively permeable membranes.

At the moment, the biggest problem is that 3D printing, or additive manufacturing as it’s known in the industry, is slow and expensive, and it is mostly used by big companies to make prototypes.

However, things are poised to change. The technology is becoming much better, and cheaper. And on top of that, researchers are developing ways to combine 3D printing with other techniques so that electronics and fibre optics can be embedded within devices.

‘There is another set of new products to be discovered basically which have these features in them, and which are not around at the moment, of course, because they cannot be made via conventional technologies,’ said Frits Feenstra, coordinator of the EU-funded SASAM project. ‘People are working on that now.’

The SASAM project focussed on working out what standards and regulations are needed to drive the 3D printing industry forward, and Feenstra believes that the 3D printing sector will really take off in one or two years’ time when the basic standards are in place.

In order to work out what kind of research is required to push forward 3D printing, industry and policymakers have come together as part of the Additive Manufacturing Platform to make recommendations. The document, called a Strategic Research Agenda, suggests things like looking for new materials that would be as strong as cast metal when 3D printed, and teaching university students about 3D printing.

More info