Directorate-General for Research & Innovation logo Horizon: the EU Research & Innovation magazine | European Commission logo
Receive our editor’s picks

Fuel, medicines and beer: the multiple benefits of the yeast genome

Sequencing the genome of yeast has enabled researchers to develop new strains that can be used in biofuels or to make vaccines. Image Credit: Shutterstock
Sequencing the genome of yeast has enabled researchers to develop new strains that can be used in biofuels or to make vaccines. Image Credit: Shutterstock

Yeast was the very first non-bacterial organism to have all of its genes sequenced, and the collaborative nature of the EU-funded breakthrough laid the foundations for the sequencing of the human genome less than 10 years later.

Unlocking the DNA of Saccharomyces cerevisiae, a species of yeast used in winemaking, baking and brewing, began through the EU’s Biotechnol­ogy Action Plan (BAP) in 1989. Led by Belgian biologist André Goffeau, a total of 147 researchers from 35 laboratories linked forces to sequence chromosome III, one of the 16 chromosomes found in yeast, with the groundbreaking results published in 1992.

‘Without the European funds, I don’t think the project would have happened at all. It cer­tainly wouldn’t have moved as fast as it did,’ said Professor Stephen Oliver, now of Cambridge University, UK, who led the team.

‘Sequencing chromosome III … provided the keys to unlock the genetic potential of yeast.’

Professor Stephen Oliver, Cambridge University, UK

‘Sequencing chromosome III … provided the keys to unlock the genetic potential of yeast and other organisms, because we could define what was there and begin to study the function of genes that, previously, we didn’t even know existed,’ he said.

Mapping the remaining 15 yeast chromo­somes was completed with further Framework Programme support for an even wider consorti­um of researchers in the EU, the US, Japan and Canada, and published in 1996.

Funding from BAP’s successors – the BRIDGE and BIOTECH programmes – helped to identify the functions of specific yeast genes. That was crucial in understanding similar genes in humans, and laid the foundations for se­quencing the entire human genome, which was completed in 2003.

Low alcohol

Having a blueprint of the inner workings of yeast has been all-important in identifying and devel­oping new strains for making beers and wines with particular flavours or lower alcohol, or to be used in hotter production regions.

New yeast varieties have also helped in ef­forts to reduce reliance on fossil fuels, through biofuels such as industrial ethanol and biodiesel from plant matter or waste from wood processing.

In medicine, the yeast genome map has allowed yeast to be used to produce new med­ications and vaccines, and in understanding diseases such as colon cancer and cystic fibro­sis. It has also played an important role in de­veloping treatments such as gene therapy.

‘I think the synergy among yeast research­ers within Europe was hugely boosted by the chromosome III project and the genome project,’ Prof. Oliver said. ‘The collaborations outlived the sequencing project itself and have continued through other projects.’